INVESTIGATIONS OF THE DUST CONTENT OF THE ATMOSPHERE By HERBERT H. KIMBALL and IRVING F. HAND [Solar Radiation Investigations Section, U. S. Weather Bureau] #### SYNOPSIS This paper is a continuation of papers on the same subject that appeared in the Monthly Weather Review for March, 1924, and June, 1925. It summarizes measurements of the dust content of the atmosphere made on the campus of the American University, District of Columbia, between December, 1922, and June, 1931, inclusive, excluding the month of June, 1923. This gives 9-year means for the winter and spring months and 8-year means for the summer and fall. The monthly averages and the annual totals show a gradual increase in the dust content of the atmosphere for the years 1923-1928, with a slight decrease in the years 1929 and 1930. Records of the total solar radiation received on a horizontal surface show that an increase in atmospheric dust has been accompanied by a decrease in the solar radiation intensity during the cold half of the year, November to April, inclusive, without a corresponding decrease during the warm months of the year. The greatest percentage of increase in the atmospheric dust content is shown in the minimum amount recorded in each month, where the annual average for 1930 was more than double that for 1923 and 1924. This increase in local atmospheric dust does not appear to have been accompanied by a corresponding decrease in the distance to which prominent objects like mountain peaks and high hills can be seen. A relation is shown between the sulphur (SO₂) content and the #### dust content of the atmosphere. #### SUMMARY OF ATMOSPHERIC DUST MEASUREMENTS The campus of the American University, District of Columbia, where atmospheric dust measurements have been made by the United States Weather Bureau since December, 1922, is in a sparsely settled suburb of Washington about 5½ miles northwest of the United States Capitol, 5 miles from all important railroads, and 2 miles northwest of the section known as Georgetown, of which that portion along the river front is largely given up to industry. The building of residences in this suburb is quite active, however, and the apartment-house section is much nearer, as well as more extensive, than it was in earlier years. Since apartment houses usually burn bituminous coal for heating, with inefficient stoking, it is not surprising that a summary of the atmospheric dust counts, given in Table 1, shows increased dustiness of the atmosphere, and especially during the cold half of the year, November to April. The years 1929, 1930, and 1931 have been an exception to this general rule, in so far as the monthly means and monthly maxima are concerned, but not in respect to the monthly minima. This is significant, as it indicates a permanent local pollution of the atmosphere that is gradually increasing in intensity. The recent decrease in the monthly means and monthly maxima may be attributable in part at least to the unusually warm winters of 1929-30 and 1930-31, and the resulting decrease in coal consumption. Table 1.—Dust content of the atmosphere at the American University, District of Columbia, at 8 a.m. (dust particles per cubic MONTHLY MEANS | Year | January | February | March | April | May | June | July | August | September | October | November | December | Annus]
means | |--|----------------------------|--|-------------------------|---|---|--|--|--|------------|--------------------------------|-----------------------------|---|--| | 1922
1923
1924
1924
1926
1927
1927
1928
1929
1930 | 1, 631
1, 011
1, 455 | 905
533
1, 092
1, 517
1, 116
1, 450
1, 086
736
951 | 1, 370
939
1, 232 | 476
645
753
755
721
856
610
753
815 | 376
416
573
729
668
621
614 | 420
507
578
607
596
489
544
631 | 397
539
480
542
933
757
549
573 | 388
326
484
532
760
675
626
828 | 774
638 | 608
692
1, 021
1, 082 | 787
851
1, 097
979 | 1, 159
1, 444
1, 056
1, 176
1, 227
881 | 540
597
726
888
914
978
752
781 | | Average | 1, 091 | 1, 043 | 836 | 709 | 555 | 544 | 596 | 577 | 617 | 754 | 891 | 1, 047 | 772 | Table 1.—Dust content of the atmosphere at the American University, District of Columbia, at 8 a.m. (dust particles per cubic centimeter)—Continued MAXIMUM | Year | | January | _ | February | | March | : | April | <u> </u> | May | Inne | emne | | July | | August | | September | | October | | November | | December | 4 7 7 11 0 1 | means | |-----------------------------------|-------------------------|---|-------------------|---|----------------|---|----------------------------|---|----------------------------|--|------------------------------|--|----------------|---------------------------------|----------------|--------------------------|----------------------|---------------------------------|----------------------------|---------|-------------------|---|----------------|--|--------------|----------------------------------| | 1924 | 2, 1, 3, 3, 3, 3, 3, 3, | 403
352
828
511
620
620
780 | 1, 2, 2, 3, 1, 1, | 050
964
370
995
474
557
982
512
649 | 1,2,2,1,2,1,1, | 280
247
999
877
617
583
176 | 1,
7,
1,
2,
1, | 661
077
527
558
039
153
166 | 1,
1,
1,
1,
1, | 781
042
529
575
082
701 | 1, 2
1, 0
1, 8
1, 4 | 991
035
560
434
897
855 | 1,
1,
1, | 016
985
651
308
922 | 1,
1,
1, | 941
443
302
976 | 1,
1,
1,
1, | 109
073
672
493
010 | 1,
1,
3,
2,
1, | | 1, 1, 3, 2, 2, 1, | 023
987
558
975
566
751
628 | 2, 3, 2, 4, 1, | 551
106
388
984
116
606 | 1,1,2,2,2,1, | 59
00
01
16
88
46 | | Average_
Absolute maxi-
mum | 1 | | 1 | 284
557 | | | 1 | | Ι. | | | | - | | ľ | | 1 | | ı | | 1 | | 1 | | ľ | | #### MINIMUM | 1922
1923
1924
1924
1925
1928
1927
1928
1928
1930 | 214
124
57
160
155
160
160
361
372 | 105
97
77
298
185
254
200
253
369 | 113
76
87
223
145
162
101
237
174 | 113
151
202
227
138
174
242
241
233 | 65
124
149
187
225
126
134
134 | 155
197
214 | 288 | 87
143
145
187
132
191 | 59
97
118
132
218
126
176
278 | 155
130
82
99 | 113
124 | 124
344
145
148
109
204 | 108
118
147
176
173
190
179 | |--|--|---|---|---|---|-------------------|-----|---------------------------------------|--|------------------------|------------|--|---| | Average
Absolute mini- | 196 | 204 | 146 | 191 | 158 | 176 | 194 | 142 | 150 | 176 | 154 | 204 | 174 | | mum | 57 | 77 | 76 | 113 | 65 | 122 | 90 | 87 | 59 | 82 | 71 | 90 | | The dust counts have been made by Mr. Hand on all working days except on the few occasions when he was absent from the city and an observer was not available to take his place. An Owens jet dust counter has been used in collecting the dust and a microscope magnifying 1,000 diameters to determine the number of particles per unit of space. For a description of the Owens instrument see the earlier paper in the Review for March, 1924. # THE RELATION BETWEEN ATMOSPHERIC DUSTINESS AND SOLAR RADIATION INTENSITY From time to time short notes have appeared in the MONTHLY WEATHER REVIEW with reference to the diminution in solar radiation due to local smoke. (See the Monthly Weather Review, October, 1924, vol. 52, p. 478, fig. 5; April, 1925, vol. 53, p. 147; January, 1926, vol. 54, p. 19; and January, 1929, vol. 57, p. 18.) Table 2 shows a general depletion at the American University, District of Columbia, in the annual totals of solar radiation for 1923-1928, and in the monthly averages during the cold part of the year for the period 1923-1930. The monthly averages for the warm part of the year show little departure from normal values. The depletion in solar radiation intensity is what would be expected from the increase in atmospheric dustiness shown in Table 1. A similar decrease in solar radiation intensity recorded at Madison, Wis., is attributed by the official in charge of that station to increased smokiness of the atmosphere due to a marked increase in the population of the section of the city in which the Weather Bureau office is located. (See the Monthly Weather Review, 1931, vol. 59, p. 272.) Table 2.—Departures of monthly totals of solar radiation received on a horizontal surface at Washington, D. C., from monthly normal values for the period 1914-1931 (gram-calories per cm.2) | Year | January | February | March | A pril | Мау | June | July | August | Septem-
ber | October | Novem-
ber | Decem-
ber | Year | |--|--|-------------|---|---|---|--|---|---|---|---|--|---|--| | 1923
1924
1925
1926
1927
1927
1928
1920 | -1, 145
+286
-413
-14
-686
+112
-217
-742 | +1.162 | -645
+160
+35
+1,099
-2,079
+245
-854
+413 | -419
+675
+98
+784
-1,064
-1,050
-1,288
-161 | +646
-766
+966
+2,073
-2,772
+56
+532
+2,448 | +311
-1,867
+979
-1,071
-105
-972
+1,274
+777 | +58
+1,590
+35
-847
+77
+1,764
+2,541
-1,216 | -1, 179
+740
+1, 176
-2, 919
-1, 260
-1, 032
+2, 002
+3, 045 | -1, 086
-1, 355
-574
-1, 827
+406
-1, 701
+637
+1, 281 | -73
+1,549
-2,373
-959
+452
+672
+511
+2,681 | -648
-467
-175
-700
-690
+364
-308
-455 | -248
-640
+28
-917
+307
-245
-219
+222 | -5, 278
-6, 475
-8, 415
-1, 740
+5, 778
+8, 405 | | MeansDepartures | -352
-8% | -273
-4% | -203
-2% | -303
-3% | +397 | -84 | +500
+0. | 1% +72 | -527 | +308 | -382
-6% | -214
-5% | -1,087 | ### ATMOSPHERIC DUST AND VISIBILITY In the paper of June, 1925, already referred to, it was shown that the product ## $D \times N \times R$. H. approximates to a constant, C, where D=distance in miles to the most distant object that can be seen, N^1 =the number of dust particles per cubic centimeter, and R. H.=the relative humidity expressed as a percentage. A recomputation of the data there given for D=10 miles or more, and applying weights corresponding to the number of observations, gives 444,000 for the value of C. A summary of dust and visibility measurements made between May, 1925, and June, 1931, inclusive, and given in Table 3, gives for the weighted mean value of C corresponding to visibilities in excess of 25 miles, 432,000, or approximately the value found from earlier observations. For shorter distances of visibility C has increased in value by from 50 to 100 per cent. This is interpreted to mean that the local dust cloud has so little extent that it does not materially interfere with the visibility of prominent objects at moderate distances, while the most distant objects still require the most favorable conditions to be distinguished. Table 3.—Relation between atmospheric dustiness and visibility of distant objects | | st | JMN | 1ER | | | W | 'IN' | ГER | | |--------------------------------|---|--|---|---|--------------------------------|--|--|---|--| | Number
of obser-
vations | N=dust particles
per cubic centi-
meter | R. H., per cent | D=visibility, miles | C=DXNXR. H. | Number
of obser-
vations | N=dust particles per cable centi- meter | R. H., per cent | D=visibility, miles | C= DXNXR. H. | | 35 | 155
223
353
445
556
647
761
851
943
1,075
1,311
1,641
2,636 | 62
69
65
70
68
70
75
72
72
73
77
74
79 | 40. 4
27. 5
24. 2
20. 7
16. 0
15. 8
12. 1
11. 8
9. 2
7. 5
4
8. 0 | 388, 000
480, 000
555, 000
626, 000
725, 000
847, 000
841, 000
788, 000
787, 000
1, 666, 000 | 19 | 158
250
198
362
448
553
652
751
857
943
1, 091
1, 341
1, 704
2, 446
3, 598 | 62
54
59
64
66
65
69
67
70
74
71
75
85 | 33. 3
34. 7
38. 9
25. 4
24. 8
21. 0
20. 0
18. 4
16. 0
13. 3
10. 1
8. 9
6. 6
3. 8
2. 1 | 321, 900
468, 600
366, 600
588, 000
733, 400
705, 000
906, 900
823, 000
844, 600
771, 000
833, 900
709, 000
702, 000 | A copy of the dust counts made at the American University, District of Columbia, is mailed each month to Dr. J. S. Owens, London, England, superintendent of observations, investigations of atmospheric pollution, department of scientific and industrial research. In a letter received after this paper was completed Doctor Owens transmits the following results of his study of the observations for the year April, 1930–March, 1931. The equation that he developed seems to give with considerable accuracy the relation between N, R. H, and V(V=D) of this paper). He says: Visibility and wind velocity are given in the returns sent in, and an attempt has been made by examining the whole of the figures for the year to find some relation between visibility, number of suspended particles, and relative humidity. The result obtained is indicated in the curve (fig. 1) given below: Figure 1.—Relation between visibility, V; number of suspended particles, N; and relative humidity, R. H. This was the result of many trials of different combinations between number of particles and relative humidity. To get consistency in the results, it is evident that some provision should be made to eliminate the effect of varying wind direction. The dust counts were made at one particular point, whereas visibility was governed by the conditions as to dust, etc., at other places along the line of view. It is evident therefore that the wind direction might make a great difference in the apparent relation between visibility, so measured, and dust contents. To eliminate this, only the days with a north wind were taken and other days neglected. The visibility, relative humidity and number of dust particles were tabulated and averages obtained of the relative humidity and dust counts for the different visibility distances. The curve given (fig. 1) is for visibility plotted against the product of relative humidity and the number of dust particles. The wind velocity is not taken into account in this curve because it appeared reasonable to assume that it was one of the factors governing the number of particles and was therefore already taken account of in the figure for the number of particles per cubic centimeter. The curve is remarkably smooth and agrees well with the equation $$V=340-69 \log (RH \times N)$$ where V=visibility in miles, RH=relative humidity, and N= number of particles per cubic centimeter. $^{^1}$ This N must not be confused with $N\!\!=\!\!$ the Bumber of nuclii of condensation found by the use of the Altken dust counter. This is not quite the same as the equation evolved by Doctor Kimball (see the Review for June, 1925, 53:243), in which he gives the visibility in terms of the relative humidity and number of particles as— $V = \frac{390,000}{RH \times N}$ (approx.) It seems probable that any expression for visibility of this form would break down when approaching the point of saturation of the air, as in this neighborhood, apart from the effect of special pollution by hygroscopic salts, we might expect a rather sudden loss of visibility rather than a gradual one. pollution by hygroscopic salts, we might expect a rather sudden loss of visibility rather than a gradual one. Since to obtain this curve (fig. 1) only days with a north wind were taken, it is not to be expected that the equation will apply when the wind is not north. Indeed, we can not hope for any general expression relating to dust count, relative humidity, and visibility until and unless we know the conditions along the line of vision. It would appear, however, that, knowing these conditions, there is good ground for believing that a simple relation might be established. # MEASUREMENTS OF THE SULPHUR (SO₂) CONTENT OF THE ATMOSPHERE Method of measurement.—Equal quantities of a solution of distilled water, iodine, potassium iodide, and soluble starch were placed in two 20-liter bottles, each bottle being tightly sealed but provided with a ground-glass stopcock. The pressure within one bottle was reduced to one-half of the current atmospheric pressure, the stopcock closed, and the bottle was then shaken vigorously in order to have the liquid wash around the entire interior glass surface, and then the stopcock opened, the bottle being vigorously shaken until normal atmospheric pressure was resumed inside of it. The liquid in the comparison bottle was also similarly shaken, but the air was not disturbed within this bottle, a detail merely to approximate similar conditions in the two bottles. The liquids in the two bottles were than placed in titration bottles; and if the tint of blue in each bottle was the same, no indication of the presence of sulphur evidenced itself. If, however, the tints differed, simple titration methods with the use of potassium iodide and other simple chemicals were resorted to in order to bring them to the same tint of blue. Table 4.—Dust particles per cubic centimeter and volumetric sulphur content of the atmosphere in parts per million | | | 19 | 26 | | | | | 19 | 27 | | | | |-----------------|--|-------------------------------|------|-----------------------------------|------------------------------------|------------------------------|---|--|---|-------------------------------|------------------------------------|----------------------| | Day of
month | Nove | an ber | Dece | mber | Janı | ary . | Febr | uary . | Ma | rch | Ar | ril | | | Dust | Sul-
phur | Dust | Sul-
Lhur | | 1 | 718
519
1, 529
853
781
1, 044 | T.
0. 20
0. 05
0. 40 | | 0
0. 85
0. 50
0
0. 35 | 1, 730
676
897
729
859 | 0. 15
0. 25
0. 10
0 | 1, 667
519
1, 000
1, 243
239
1, 462
1 1,831
1, 777 | 0. 10
0. 25
T.
0. 15
0. 20 | 1, 044
166
187
1, 027
1, 147
414 | T.
0. 20
0. 30
0. 30 | 781
607
1, 193
155
498 | T.
0. 48
0. 20 | [!] Additional data for Feb. 8: | Time | Dust,
particles
per cubic
centi-
meter | Sulphur,
parts per
million | |---------|--|---| | 10 s. m | 2, 470
2, 066
790
607
680
1, 216 | 0. 95
0. 45
0. 10
T.
0. 25
0. 40 | | | | 19 | 26 | | | | | 19 | 27 | | | | |---|--|--|--|--|---|--|---|--|------------|--|---|---| | Day of
month | Nove | mber | Dece | mber | Jan | nary | Febr | uary | Ma | rch | A | oril | | | Dust | Sul-
phur | Dust | Sul-
pbur | Dust | Sul-
phur | Dust | Sul-
phur | Dust | Sul-
phur | Dust | Sul-
phur | | 1 2 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 365
779
1, 256
288
984
781
1, 004
1, 518
781
1, 646
1, 646
1, 646
1, 646
1, 646
1, 646 | 0. 10
0. 10
0. 75
0. 15
0
0. 10
0. 80
0. 55
0. 40
0. 65
2. 65
3. 10
T. | 498 1, 457. 781. 1, 111. 727. 1, 653. 521. 2, 024. 2, 2, 388. 344. 1, 546. 1, 319. 628. 386. 1, 359. | 0. 20
0. 10
0. 25
0. 15
0
0. 35
0
1. 25
0. 75
0. 76
0. 80
0
0. 45
0. 465
0. 65 | 584
1, 243
603
187
785
985
3, 072
1, 359
607
261
155
773
1, 947
651
260
3, 511
1, 044 | 0. 35
0. 70
0. 95
0. 10
0
0. 20
1. 60
0. 45
0. 46
0. 40
0. 15
0. 50
0. 10
0. 45
0. 50
0. 10 | 1, 426
2, 234
223
834
1, 348
197
376
623
1, 676
1, 151
305
1, 567
185 | T. 0. 50 T. 0. 25 0. 40 T. 0. 10 0. 20 T. 0. 20 T. 0. 75 0 | 145
972 | 0.70
0.30
0.20
0.35
0.85
T.
0.15
T.
0.15
0.20
0.20 | 991
353
1, 457
571
983
498
1, 046
1, 529
729
225
106
386
590
1, 457
130
1, 319
1, 558 | 0. 10
0. 26
T.
0. 16
0. 10
0. 10
0. 10
0. 10
0. 10
0. 15 | | Day of | | ······································ | Ju | 1 | Ju | 19 | 27
Aug | | Septe | | Octo | | | | | | | | | 19 | 27 | | | | | | |-----------------|--|---------------------------|--|---|---|---|--|------------------|--|---------------------------------------|---|--| | Day of
month | M | a y | Ju | ПӨ | Ju | ly | Aug | gust | Septe | mber | Oct | ober | | | Dust | Sul-
phur | | 1 | 229
674
596
622
1, 516
899
271
727
603
806
246
353
225
269
1, 252
1, 426
1, 138
496 | 0
0. 10
0
0 | 149
673
865
1, 147
143
603
729
164
813
888
5 271
832
256
1, 560 | 000
000
000
000
000
000
000
000
000
00 | 806
834
731
1, 128
922
353
1, 457
288
1, 037
918
785
1, 006
1, 338
601 | 0T.
0 0 T.
0 0 T.
0 T.
0 T.
0 T. | 225
781
1, 233
187
225
1, 004
1, 214
229
435 | TOTHOO 00000T. | 1, 424
813
374
970
1, 651
288
708
1, 518
983
781
1, 193
406
218
496
1, 214 | T.
0
0
0,05 | 796
1, 210
99
680
1, 252
970
307
1, 5918
225
813
3, 133
1, 646
162
807
363
790 | 0.25
0
0
0
0
0 | | 25 | 928
458
386
624
1, 483 | 0, 15
0
0
0
0 | 122
363
218
554 | T.
0
0
0
T. | 1, 006
1, 046
781
1, 426
993
1, 651 | T.
0
0.05
T.
0.10 | 225
804
1, 252
498
645
991 | 0
0
0
0 | 1, 518
1, 672
790
813
601 | 0. 05
0. 05
0. 10
0. 05
0 | 1, 042
601
1, 552
1, 346
1, 840 | T.
0. 15
0. 20
0. 15
0. 25 | | | | 19 | 27 | | | | | 19 | 28 | | | | |-----------------|--|--|---|--|--------------------------------|---|---|--|---|---|---|---| | Day of
month | Nove | mber | Dece | mber | Jan | ıary | Febr | uary | Ma | rch | Aj | oril | | | Dust | Sul-
phur | Dust | 8ul-
phur | Dust | Sul-
phur | Dust | Sul-
phur | Dust | Sul-
phur | Dust | Sul-
phur | | 1 | 1, 000
435
601
905
1, 105
1, 611
2, 566
1, 621
603 | 0. 10
0
0
0. 10
0. 40
0. 10
0. 55
0. 20 | 166
393
1, 436
676
363
836 | 0
T.
0. 25
T.
0. 05
0. 25 | 1, 730
2, 184
689
985 | T.
0. 05
0. 10
0. 20
0. 45
0. 10
T. | 1, 768
1, 042
3, 511
970
813
1, 453
622 | 0. 25
0. 20
0. 10
0. 90
0
0. 15 | 680,
943
441
2, 617
2, 188
1, 672
2, 020
622
2, 190 | 0
0, 10
0, 55
0, 40
0, 20
0, 95
0, 10 | 2, 039
695
907
699
878
645
476
252 | 0
0.40
0
0
0
0
0.20
0.30 | ² Dense smoke cloud enveloped university this date; 4,502 particles of dust per cubic centimeter at 1:30 p. m. ³ Much soot. Much soot. Haze in west; local smoke with noticeable sulphur odor. Spores. Table 4.—Dust particles per cubic centimeter and volumetric sulphur content of the atmosphere in parts per million—Continued | | | 19 | 27 | | | | | 19 | 28 | | | | |-----------------|-------------------------|--------------|----------------------|------------------|----------------------------|-------------------------|--------------------------|-------------------------|------------------|-----------------|----------------------------|----------------| | Day of
month | Nove | mber | Dece | mber | Jan | iary | Febr | uary | Ma | rch | Ap | ril | | | Dust | Sul-
phur | | 4 | 1, 182
884 | 0. 10
T. | 145
1,831 | 0 0.40 | 1, 558 | 0. 10 | 2, 066
254 | 0. 20 | 2, 886
405 | 1. 30 | 178 | 0 | | 6
7
8 | 2, 512
1, 420
359 | 0.45 | 2,598 | 1, 10 | 2, 297
1, 042
1, 667 | 0. 55
0. 20
0. 40 | 1, 665
1, 34 8 | 1. 10
0. 25
0. 80 | 2, 402
1, 764 | 0. 35
0. 20 | 418
1, 533
456 | 0
0
0. 2 | | 9
0 | 970 | 0 | 496
796
1, 651 | T.
0, 45
0 | 2, 176 | 0 | 1, 651
1, 350 | 0. 10 | 164
557 | 0
0
0, 20 | 1, 321
1, 533
2, 039 | 0
0.1
T. | | 1
2
3 | 783
1, 203 | 0 | 521
1, 453 | Õ. 35 | | | 983
1, 825 | 0.30 | | Ť. | 1, 113 | 0.4 | | 4
5 | 811 | | 1, 200 | | 2, 251
160 | 0,20 | | 0 | 882 | ŏ | 867
174 | 0.4 | | 8
7 | 1, 940 | | 2, 253 | 0, 15 | 1, 539 | 0.10 | | | 1, 853
376 | 0. 10 | 672
894 | ŏ | | 8
9 | 874
916 | | 2, 798
1, 037 | | | | 804
3, 557 | 0.25 | 1, 764
1, 809 | 0. 20
0. 10 | | 0. 2 | | 0 | 403 | | | | | | | | 170
162 | 0 | 1, 073 | Ö | | | | | | | | 19 | 28 | | | | | | |---|--|--|--|---|---|---|--|---------------------------------------|---|---|--|--| | Day of
month | М | ау | Ju | ne | Ju | ly | Au | gust | Septe | mber | Oct | ober | | : | Dust | Sul-
phur | | 1 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 966 4900 981 1, 168 981 1, 575 8111 266 934 1, 216 502 216 603 1, 210 204 403 235 1, 206 603 1, 210 24 403 235 1, 210 24 403 235 1, 210 24 403 235 1, 210 24 403 403 403 403 403 403 403 403 403 40 | 0
0
0
0
0
0
0
10
0
0
0
0
0
0
0
0
0
0
0 | 569 964
376 2755
11, 434
594
11, 132, 286
605
7222
788
336
6722
202
2426
426
972
202
426
558
458
458 | 0 0. 20 0. 10 0. 10 0. 10 0. 10 0. 10 0. 10 0. 10 0. 10 0. 10 0. 10 0. 15 0. 15 0. 0 0. 0 | 384
865
1, 107
420
1, 308
1, 014
386
628
386
821
947
777
865
729
1, 4470
470
470
470 | 0.25
0.25
0.20
0.20
0.20
0.10
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0 | 437
672
899
662
907
594
351
626 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 437 731 632 1, 493 286 552 1, 294 1, 159 361 1, 064 861 1, 1, 064 865 538 | 0 0 0 15 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1, 401
687
1, 258
830
1, 199
2, 163
1, 596
2, 772
1, 888
351
998;
1, 258
739
840
393;
628 | 0. 20
1. 15
0. 25
0. 40
0. 40
0. 45
0. 30
0. 45
1. 60
0. 55
1. 77
0. 65
T. 0. 25
0. 20
0. 45 | | 31 | 437 | 0 | | | • 972 | 1. 20 | 1, 109 | U. 4 0 | | | 1, 210 | 0.75 | 4 Haze. Table 4 gives the daily sulphur measurements, together with the determination of the dust content of the atmosphere. The two measurements were made at the same place and the sulphur determinations followed immediately the dust measurements. Table 5 summarizes the atmospheric sulphur determinations. From May to August, inclusive, on at least half the days on which determinations were made, not a trace of sulphur was found, and from April to September, inclusive, on more than half the days the amount present was not measurable (T. or 0). Also, from April to August, inclusive, the measured amount did not exceed in volume 0.45 parts per million, and in the majority of cases it did not exceed 0.2. An amount in excess of one part per million in volume was measured on only 15 days out of the 600 on which measurements were made. Five of these days were in October, 1928, and were accompanied by an unusual number of dust particles, which quite probably came from a furnace that was being operated by the nitrate fixation laboratory on the American University campus to reduce certain rock material for the purpose of extracting phosphoric acid and potash. Eight of the remaining ten days with much sulphur were also days with many dust particles, the maximum of sulphur, 3.1 parts per million, on November 26, 1926, having as its accompaniment 3,975 dust particles per cubic centimeter. October 15, 1927, with 2.4 parts of sulphur per million had 3,133 dust particles per cubic centimeter, and there was a noticeable odor of sulphur from local smoke. December 22, 1926, with 1.25 parts of sulphur per million had only 344 dust particles per cubic centimeter, but it was raining at the time, and this would have a tendency to precipitate local dust from the lower atmospheric layers. On July 31, 1928, with 1.2 parts of sulphur per million, only 972 dust particles per cubic centimeter were collected by the Owens jet dust counter, but a note states that there was a dense haze, with the wind from the south. Such a wind would bring smoke from the industrial section of Georgetown. The chemical process used in measuring atmospheric sulphur records in units of 1 part in 20,000,000 by volume, while it is generally conceded that 2 parts in a million is noticeable by its sulphur odor to the average individual. Table 5 .- Summary of atmospheric sulphur determinations | Parts per million | Average monthly occurrences | | | | | | | | | | | | |---|--|------------------------------|--------------------------|------------------------------|--------------------------|----------------------|--------------|-------|--------------|----------------------|------------|----------------------| | | November | December | January | February | March | April | May | June | July | August | September | October | | 0.
T.
0.05 to 0.20.
0.25 to 0.45.
0.50 to 0.95. | 7.5
2.0
7.0
4.0
3.0
1.0 | 2. 0
6. 0
6. 5
4. 0 | 2.0
9.0
4.5
4.5 | 3. 5
8. 0
5. 0
2. 5 | 3.0
8.5
4.0
3.5 | 3. 0
7. 0
4. 5 | 2. 0
7. 0 | 7.5 | 3. 5
5. 5 | 3. 0
3. 0
3. 5 | 2.0
6.0 | 3. 5
7. 0
5. 5 | | Average number of days | 24. 5 | 25. 0 | 25. 0 | 24. 0 | 27. 0 | 25. 5 | 25. 5 | 25. 5 | 23. 0 | 27. 0 | 21. 5 | 26. 5 | These sulphur determinations were made at the request of the United States Bureau of Standards. They constitute a link in a series of tests made in cooperation with the International Nickel Co. in a study of the durability of wire screens under different conditions. Measurements made in Pittsburgh represented conditions in an industrial city. Measurements at the navy yard, Portsmouth, Va., represented seacoast conditions, where the atmosphere contains many salt crystals. The campus of the American University, District of Columbia, was expected to approximate open-country conditions.